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The nonlinear growth of periodic disturbances on a finite vortex layer is examined. 
Under the assumption of constant vorticity, the evolution of the layer may be 
analysed by following the contour of the vortex region. A numerical procedure is 
introduced which leads to higher-order accuracy than previous methods with 
negligible increase in computational effort. The response of the vortex layer is studied 
as a function of layer thickness and the amplitude and form of the initial disturbance. 
For small initial disturbances, all unstable layers form a. large rotating vortex core 
of nearly elliptical shape. The growth rate of the disturbances is strongly affected by 
the layer thickness; however, the final amplitude of the disturbance is relatively 
insensitive to the thickness and reaches a maximum value of approximately 20 % of 
the wavelength. In  the fully developed layers, the amplitude shows a small oscillation 
owing to the rotation of the vortex core. For finite-amplitude initial disturbances, 
the evolution of the layer is a function of the initial amplitude. For thin layers with 
thickness less than 3 yo of the wavelength, three different patterns were observed in 
the vortex-core region: a compact elliptic core, an elongated S-shaped core and a 
bifurcation into two orbiting cores. For thicker layers, stationary elliptic cores may 
develop if the thickness exceeds 15 yo of the wavelength. The spacing and eccentricity 
of these cores is in good agreement with previously discovered steady-state solutions. 
The growth rate of interfacial area (or length of the vortex contour) is calculated and 
is found to approach a constant value in well-developed vortex layers. 

1. Introduction 
A variety of fluid flows are characterized by regions where a sharp change in the 

velocity occurs over a thin layer of the fluid. The two major classes of such flows are 
boundary layers on solid surfaces and free shear layers in the fluid. Free shear layers 
arise in natural flows in the atmosphere and in the oceans, as well as in industrial 
processes involving the mixing of fluid streams. Perhaps, most importantly, they are 
fundamental to an understanding of the dynamics of flow at high Reynolds number. 

Free shear layers have received special attention in recent years owing to the 
widespread interest in coherent structures in turbulent flow. There has grown up 
around the subject a vast literature of experimental and theoretical studies. The chief 
goal of these efforts has been to describe the detailed structure of the layers, to predict 
the growth rate and to determine the effect of the relevant flow parameters. A 
comprehensive review of the major efforts in this area has been given recently by Ho 
& Huerre (1984). Both laminar and turbulent shear layers have been studied using 
a variety of techniques. These include turbulence modelling, numerical solutions of 
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the Navier-Stokes equations, inviscid models based on vortex dynamics and both 
linear and nonlinear stability analysis. 

In the study of purely inviscid shear layers, one of the most promising approaches 
is through the formalism of vortex dynamics. The major efforts in this area may be 
classified according to the distribution of vorticity. In the first class, the shear layer 
is represented by a large collection of discrete vortex markers. The induced velocity 
is calculated directly from the distribution of point vortices or vortex cores, or 
indirectly through the cloud-in-cell method. These methods provide an adequate 
description of the layer in an average sense, but cannot resolve the finer details of 
the motion, except a t  prohibitive cost. Representative calculations include Acton 
(1976), Ashurst (1979), Aref & Siggia (1980) and Krasny (1984). The second class of 
vortex methods considers the shear layer in the asymptotic limit as a vortex sheet. 
This method is subject to severe mathematical difficulties, owing to the appearance 
of singularities in the description of the sheet. Recent papers dealing with periodic 
disturbances on infinite sheets include Meiron, Baker & Orszag (1982) and Higdon 
6 Pozrikidis (1985). In  the third class of vortex methods, the vorticity is bounded 
and is distributed over finite regions of the fluid. In  the simplest case, the vorticity 
is assumed constant, and the problem is reduced to one of following the contours of 
the vortex regions. Zabusky and coworkers (see e.g. Overman & Zabusky 1982) have 
used this model to study isolated patches of vorticity in an infinite fluid. They have 
established the existence of steady-state vortex regions and have examined thc 
coalescence of neighbouring vortex cores. Pullin (1981) used the model to study 
periodic disturbances on a vortex layer attached to a wall. A review of the 
applications of all types of vortex methods to free shear layers has been given by Aref 
(1983). 

In the present paper, we use the constant-vorticity model to study the growth of 
periodic disturbances on free shear layers. Our goal is to investigate the effect of the 
layer thickness on the growth of disturbances. Linear stability theory, Rayleigh 
(1880) (also see Appendix), shows that the maximum growth rate occurs for 
wavelengths approximately 8 times the layer thickness, while wavelengths shorter 
than 5 layer thicknesses are stable. We shall study the effect of thickness on the 
growth rate for nonlinear disturbances. In addition, we shall show that, for finite- 
amplitude disturbances, not only the thickness of the layer, but also the form of the 
initial disturbance affect the asymptotic structure of the layer. 

2. Mathematical formulation 
2.1. Calculation of the j u i d  velocity 

A basic theorem of vector analysis states that any vector field may be separated into 
two parts, one of which has zero divergence and the other zero curl. In fluid dynamics, 
we extend this theorem to write the velocity as the sum of three contributions: the 
first due to the vorticity, the second due to the local expansion of the fluid and the 
third due to a velocity potential. For an incompressible, unbounded fluid, the last 
two are zero, and we may write the velocity simply as an integral over the vorticity 
distribution. 

In two dimensions, 

(1 )  
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where q* is the complex velocity, w is the vorticity and W(z’) is the complex potential 
for a point vortex, defined as 

1 
2ni 

W(z’) = $+i$ =-ln(z-2‘). 

The integral expression in (1) may be used to evaluate the velocity at any point 
in the fluid. Thus, we might calculate the velocity of all elements of rotational fluid 
and follow the evolution of the vortex layer in time. Before we can implement such 
a strategy, we require a measure of the rate at which vorticity changes over 
time. For constant-density or barotropic fluids in two-dimensional motion, Kelvin’s 
theorem guarantees that the vorticity of an element of fluid is conserved. Therefore 
the vorticity moves with the fluid, and we may find the vorticity at any instant by 
following the trajectory of material points in the vortex layer. 

With the additional assumption that the vorticity is initially uniform, the 
calculation may be greatly simplified. Converting to real variables, we employ the 
streamfunction $ and apply Green’s theorm to (1) to obtain 

= w s, $tdk (3) 

where C represents all contours bounding the vortex region and t is the unit vector 
tangent to C. 

As an alternative, we might use the velocity potential $ and apply Gauss’ theorem 
to (1) yielding 

U = - 0  J‘, $ndl7 (4) 

where n is the unit normal vector. 
With the velocity defined by (3) or (4), we have a nonlinear integro-differential 

equation for the motion of material points on the vorticity contours. While a few 
simple solutions have been found (e.g. Kirchoff 1876), one must resort to numerical 
techniques to study more general configurations. In a standard numerical procedure, 
the vortex contour is identified by a finite number of marker points. The contour 
integrals are evaluated by choosing a suitable interpolating function, and the velocity 
of each marker point is calculated. The positions of the marker points are updated 
and the calculation steps forward in time using standard algorithms. 

Previous authors including Zabusky and coworkers (Deem & Zabusky 1978 ; 
Zabusky, Hughes & Roberts 1979; Overman & Zabusky 1982) and Pullin (1981) have 
used straight-line segments to interpolate between marker points. In  the present 
study, we employ a higher-order discretization, fitting circular arcs through neigh- 
bouring sets of points. This choice gives higher accuracy, allows for the analytical 
evaluation of the integrals on each interval and requires no more computational effort 
than the straight-segment representation. Although either (3) or (4) may be used to 
calculate the velocity, we find it more convenient to work with the stream function, 
because the velocity potential is multivalued. 

For infinite vortex layers with periodic disturbances, we do not use (1) or (3) 
directly because of the infinite interval of integration. Instead, the complex potential 
(2) is replaced by the potential for a periodic line of vortex singularities 

1 - 2x1 l [  A 
n(z-2‘) 

Wp(z’) = &+i$ - - In sin- ( 5 )  

(see e.g. Lamb 1932, $156). 
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FIQURE 1. Local representation of vortex contour with circular arc. 

Similarly, the stream function @ in (3) is replaced by its periodic counterpart $p 

defined as the imaginary part of (5).  With this substitution, we find that we can no 
longer evaluate the integrals on each discrete interval analytically. To circumvent 
this difficulty, we subtract from the integrand the stream function for a single-vortex 
singularity. The remainder is non-singular and may be easily evaluated using 
standard quadratures. This procedure is quite common and is similar to that 
employed by Pullin (1981). Thus, we write the velocity in the form 

c c 

where the integration extends over the contour C, bounding a single period of the 
vortex layer. 

In this expression, the first integral is evaluated analytically over each arc, while 
the second integral is evaluated numerically. In practice, a five-point Gauss-Legendre 
quadrature on each interval is sufficient to make t,he numerical error smaller than 
the discretization error. 

2.2. Error analysis 

To estimate the error involved in our discretization, we consider a small section of 
the sheet passing through three consecutive points as shown in figure 1. In a local 
polar coordinate system with the origin at  the centre of the arc, the exact position 
of the contour is specified by 

r = R(1 +f(O)), (7) 

where R is the radius of the arc. 

may write 
With the requirement that the contour pass through the three specified points, we 

f(0) = (w-4 (e-B)g(e) ,  (8) 

where g ( 0 )  is a non-singular function of 0; a and /3 are the angles subtended by the 
outer points. Approximating the contour with a circular arc is equivalent to setting 
f(0) identically equal to zero. 
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With the definitions above, the integral over the arc takes the form 

’ In [R8(4( 1 +f) sin2+O+ f 71 we,+ (1 +f) eel d8. (9) 

The error involved in the discretization may be found by expanding the integrand 
with respect to 8, evaluating and comparing with the case f = 0. We find 

where uapprox represents the arc discretization and 6 = max (a, p). 
A similar analysis applied to the straight-segment discretization gives an error of 

order 8. In  this case, e is the length of the segment multiplied by the local curvature 
of the sheet. 

2.3. Numerical procedure 
The method for evaluating the fluid velocity described above forms the foundation 
of our calculations. To implement this procedure in numerical computations, we 
identify a collection of marker points on the initial contour. The initial velocity of 
each point is calculated and the computation moves forward one step. At each 
successive instant, the distribution of points is examined and new points are inserted 
according to two criteria. If the arc subtended by any trio of points exceeds a 
pre-established maximum, additional points are inserted using the method suggested 
by Higdon & Pozrikidis (1985). Briefly, this involves placing the new points in 
positions such that the curvature remains a smooth function of arclength. The second 
criterion is that the length of an arc should not exceed a given maximum length. While 
the length of the arcs does not directly affect the accuracy of the velocity calculation, 
this second requirement leads to a more uniform rate of point insertion. Finally, when 
a large number of points accumulates in a region of small curvature, i.e. where only 
a few are needed for an accurate velocity calculation, points are eliminated to 
minimize computation time. 

For the calculations presented in the following section, a 4th-order Runge-Kutta 
method was used for the time integration. In  certain cases, this was combined with 
Gear’s (1971) method to adjust the time step to optimize computational efficiency. 
A typical calculation for a single layer required approximately 10 min CPU time on 
a CYBER 175 or 3 h on a VAX 11/780. The criteria for point insertion and time step 
were established empirically. The number of marker points used in each calculation 
is indicated on the respective figures in the following section. In  a typical case, 150 
marker points were used in the final step of the calculation. The accuracy of the 
calculations was verified by repeating selected calculations with twice the number 
of marker points and half the time step. In  all cases, the profiles were identical to 
within a plotted line width. 

3. Periodic disturbances on finite vortex layers 
3.1. Speci&ztion of the initial disturbance 

Having developed an efficient procedure for following the evolution of finite vortex 
layers, we consider the specific problem of layers with periodic disturbances. We 
specify the initial perturbation of the boundaries in the form 

y+ = @+a, sin ( k x - ~ ) ,  1 
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ROURE 2 a-c. For caption see facing page. 

where b is the thickness of the layer, k is the wavenumber, a,, is the initial amplitude, 
and q5 is the phase shift between the upper and lower boundaries. When # = 0,  the 
mean position of the layer is perturbed, but the total circulation per unit length is 
constant; we refer to this as a shape disturbance. Similarly, when # = x ,  the 
circulation is perturbed, but the mean position of the layer is undisturbed; hence we 
call this a circulation disturbance. The complete specification of the initial disturbance 
in non-dimensional form requires values for kb, a , k  and 4. We shall follow the 
evolution of the layers in terms of the non-dimensional time t’ = wt.  

The phase angle $ dictates the type of the initial disturbance. The two disturbances 
identified above as shape and circulation are the most natural from a physical point 
of view; however, any value of q5 from - x to x is certainly possible. An obvious choice 
is the phase shift associated with the growing normal mode in the linear stability 
analysis. The value of $ for this normal mode changes as a function of thickness, 
ranging from $ = 0 for kb = 0 to $ = 7t for kb = 1.278+, the maximum thickness for 
which linear theory predicts the growth of disturbances. 
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FIQURE 2. Evolution of vortex layer subject to small-amplitude shape disturbance, a, k = 0.03; 
layer thickness, kb = 0.125. Numbers at top of this and subsequent figures are the number of marker 
points along the contour. (a) t’ = 0; ( b )  42.5; (c) 53.0; (d )  60.5; (e) 65.0; cf)  69.2. 

3.2. Shape disturbances - small amplitude 
To isolate the effect of layer thickness for disturbances of fixed phase, we start by 
considering small disturbances with 4 = 0, i.e. shape disturbances. All perturbations 
studied in this section begin with an initial amplitude a. k = 0.03. Calculations show 
that the initial development for this amplitude is well described by linear theory; 
hence smaller amplitudes are unnecessary. Figure 2 shows the evolution of a shape 
disturbance on a thin vortex layer with kb = 0.125. This corresponds to a layer 
thickness approximately 0.02 times the wavelength. The initial view, figure 2 (a ) ,  
shows the almost imperceptible initial disturbance. Figure 2(b )  shows the shape of 
the layer after the first phase of the evolution which is well described by linear theory. 
The boundaries of the layer are nearly sine waves and show only a slight shift in phase. 
This phase shift is predicted by linear theory, because the growing normal mode has 
a small non-zero phase shift for this thickness. Figure 2(c) shows the first signs of 



232 C .  Pozrikidis and J .  J .  L. Higdon 

FIQURE 3a-c. For caption see facing page. 

markedly nonlinear behaviour with the accumulation of vorticity within small 
well-defined regions along the layer. This process continues in figure 2 (d-f) with the 
formation of rotating vortex cores of nearly elliptical shape. Figure 2 (f) represents 
the asymptotic form of the layer with a compact central core surrounded by long 
thin vortex wings. At later times, the wings will continue to spiral around the cores, 
but the relative distribution of vorticity between the cores and the wings will remain 
nearly constant. Despite the accumulation in the cores, nearly 75 % of the vorticity 
remains in the wings for this layer. 

Figure 3 shows the evolution for a layer with thickness kb = 0.175, slightly thicker 
than the previous case. This demonstrates essentially the same behaviour as the 
previous layer with the same stages in the development. The important difference 
between the two cases is that the thicker layer evolves faster owing to the greater 
area of vorticity, i.e. owing to the greater shear across the layer. In  this sequence, 
the calculation has been extended to a later time to show the continuation of the roll-up 
process. 

Proceeding to layers of substantially greater thickness, we observe the development 
of a kb = 0.50 layer in figure 4. Once again, the early stages are similar, starting with 
an infinitesimal initial perturbation, figure 4 (a), a small-amplitude disturbance 
consistent with the predictions of linear theory in figure 4(b) ,  and the appearance of 
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FIGURE 3. Evolution of vortex layer with small-amplitude shape disturbance ; layer thickness, 
kb = 0.175. (a) t' = 0; (b)  33.0; (c) 45.0; (d) 49.5; (e) 54.0; cf) 55.8; (8)  69.8. 
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FIQURE 4 u-c. For caption see facing page. 

nonlinear effects with the accumulation of vorticity in (figure 4 (c). It is in the later 
stages, figure 4(d - f ) ,  that we see a qualitative difference in the roll-up process. The 
core is larger of course because of the greater total quantity of vorticity but, in 
addition, the core contains a greater fraction of the vorticity - 60 % vertw 25 yo for 
the thinnest layer kb = 0.125. This concentration of vorticity dominates the flow with 
a much stronger rotating flow in the core region. We note that the elliptical core 
rotates with a nearly constant angular velocity. 

The evolution of a layer with still greater thickness, kb = 1.00, is shown in figure 5.  
In  this case, the qualitative differences appear even at the earliest stages. Figure 5 ( b )  
shows the small-amplitude disturbance which may be predicted by linear theory ; 
however, we notice a substantial phase shift between the upper and lower surfaces. 
Physically, this is due to the translation of the surfaces in the shear flow. From linear 
analysis, this may be predicted because the growing normal mode has a phase shift 
of in for this thickness. Figure 5 ( c )  shows a distinctly nonlinear growth and is 
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I 
FIQURE 4. Evolution of vortex layer with small-amplitude shape disturbance ; layer thickness, 

kb = 0.50. (a) t’ = 0; ( b )  13.2; (c) 24.0; (d) 29.4; (e) 34.8; cf)  37.2. 

interesting because of the very rapid accumulation of vorticity in the cores. A 
comparison with figure 4 (c) shows that the wings or ‘braids ’ are actually thinner for 
this layer although the initial thickness was greater. This may be explained by the 
extreme concentration of vorticity in the core with the resulting extensional flow in 
the intervening region. In the succeeding stages, figure 5 (d-f) ,  the wings are drawn 
out into extremely thin lines with nearly all the vorticity, approximately 90%, 
concentrated in the elliptical cores. While the cores rotate with almost constant 
velocity as before, the angular velocity is substantially smaller than for the kb = 0.50 
layer. 

The final layer on which we consider infinitesimal shape disturbances is of thickness 
kb = 1.278+. This corresponds to the point of neutral stability as predicted by linear 
theory. All layers of greater thickness are stable to small disturbances. As can be seen 
in figure 6, the disturbances grow, but the time required to reach finite amplitude, 
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FIGURE 5a-c. For caption see facing page. 

figure 6 (b ) ,  is much greater than for the thinner layers presented earlier. In other ways, 
the kb = 1.278 layer is similar t o  the kb = 1 .OO layer, with an even more pronounced 
accumulation of vorticity and thinner wings than in the previous case. Calculations 
performed for thicker layers showed no growth for infinitesimal disturbances. This 
is consistent with expectations from linear theory. 

3.3. Circulation disturbances - small amplitude 
We have seen that the asymptotic form of the vortex layer is strongly influenced by 
the thickness of the layer or equivalently by the wavelength of the disturbance. We 
now consider the effect of changing the form of the initial disturbance by studying 
the evolution of layers subject to circulation disturbances. For disturbances which 
are truly infinitesimal, i.e. in the limit as a0 k+O, there will be no difference in the 
evolving profiles, because both will emerge from the growing normal mode of linear 
theory. There will be differences in the initial growth rates, as discussed in a later 
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FIGURE 5. Evolution of vortex layer with small-amplitude shape disturbance ; layer thickness, 
kb = 1.00. (a) t’ = 0; (b)  12.0; (c) 21.0; (d )  25.5; (e) 28.8; (f) 31.8. 

section, but the profiles will be identical after the decaying normal modes have 
disappeared. 

We wish to examine the effect of a small, but not infinitesimal, disturbance on a 
thin vortex layer. We choose a, k = 0.03 on a layer of thickness kb = 0.125. Although 
a, k is extremely small, the value of a,/b is approximately 0.26 ; linear theory assumes 
both quantities to be negligible. Figure 7 (a) shows the form of the initial disturbance. 
As is easily seen, the circulation per unit length is significantly perturbed even for 
this small amplitude. Comparing with figure 2 (a), we might infer that a circulation 
disturbance constitutes a stronger perturbation on thin layers. Because it starts with 
an initial accumulation of vorticity, the circulation disturbance grows more rapidly 
than the shape disturbance, with greater overall accumulation at  an earlier stage. 
At any given instant, the circulation disturbance has a greater amplitude than the 
shape disturbance with the same initial amplitude. 
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FIQURE 6a-c. For caption Bee facing page. 

Similar calculations have been performed on thicker layers with the same initial 
amplitude a, k = 0.03. The same qualitative behaviour is observed, but the differences 
with the shape disturbances diminish as the thickness increases. This is to be 
expected, since the ratio a,/b decreases when the thickness kb is increased for constant 
a, k. Thus, for a thick layer, kb = 1 .OO, the development of a circulation disturbance 
is nearly indistinguishable from that of the shape disturbance previously shown in 
figure 5.  

3.4. Shape disturbances -$nite amplitude 
In the calculations presented above, we considered disturbances with small initial 
amplitude. For the most part, the early stages in the growth of these layers is 
predicted by linear theory. A t  this point, we would like to analyse the evolution of 
layers subject to finite disturbances. In  real flows, the perturbations may be of finite 
size and cannot be modelled by linear theory, even in the early stages. One of the 
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FIGURE 6. Evolution of vortex layer with small-amplitude shape disturbance; layer thickness, 
kb = 1.278+, corresponds to neutral-stability point from linear theory. (a) t’ = 0; (b)  26.0; (c) 35.0; 
(d) 39.0; ( e )  42.5; cf)  43.9. 

problems in studying finite-amplitude disturbances is in choosing the form of the 
initial disturbance. For infinitesimal amplitude, the choice of sinusoidal waves is quite 
general, because more general disturbances may be analysed through a Fourier 
decomposition. For large-amplitude disturbances with nonlinear interactions, this 
simplification does not apply, and the choice of initial disturbance involves some 
arbitrariness. We choose an initial perturbation in the form of finite-amplitude sine 
waves with the upper and lower boundaries specified in the manner described above. 
While this is an arbitrary choice, it is the most natural one and will provide a closer 
comparison with the small-amplitude cases studied above. 

In the examples which follow, we shall restrict our attention to shape disturbances, 
4 = 0, and consider layers of different thicknesses, each with initial amplitude 
a,, k = 0.50. Figure 8 shows the evolution of a disturbance for the thinnest layer, 
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kb = 0.125. The first view, figure 8 (a), shows the magnitude of the initial perturbation, 
while the next frame, figure 8 (b), shows the early accumulation of vorticity along the 
layer. Although this development appears qualitatively similar to that observed for 
small disturbances, we notice a slight difference in the thinning near the midpoint 
of the core region. This is more easily observed in the succeeding view, figure 8(c), 
where the central region has split into two well-defined vortex cores. At later times, 
figure 8(d - f ) ,  the ‘braid’ connecting the two cores becomes extremely thin, while the 
two vortex regions form compact cores which orbit each other in a quasi-steady 
motion. The position of the cores is quite stable, and figure 8 (f) may be viewed as the 
asymptotic state for this layer. 

The bifurcation into two vortex cores is the most dramatic difference between the 
large- and small-amplitude disturbances. A second feature which is not as readily 
apparent is that the cores contain more vorticity and the wings are much thinner 
for the large-amplitude disturbance. The cores contain nearly 50% of the total 

FIGURE 7 a-c. For caption see facing page. 
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FIGURE 7. Evolution of vortex layer with small-amplitude circulation disturbance, a, k = 0.03 ; 
layer thickness, kb = 0.125. (a) t’ = 0; ( b )  11.0; (c) 25.0; (d) 31.0; (e) 34.0; d f )  36.4. 

vorticity in this case, a compared with 25 yo previously. Thus, each of the vortex cores 
in figure 8 contains approximately the same vorticity as the core shown in figure 2. 

Proceeding to layers of greater thickness, in figure 9 we examine the layer with 
kb = 0.175. For small amplitudes, this layer showed behaviour essentially identical 
with that of the kb = 0.125 layer. In the present case, the behaviour is similar in the 
early stages, figure 9(a,b),  but the thicker layer does not show the indentation in the 
emerging core. At later times, the development is quite different with the formation 
of a single elongated S-shaped core. There appears to be a critical thickness below 
which the vortex region splits into two cores. We conclude that this critical thickness 
depends on the initial amplitude (and form) of the disturbance, since we observed 
the formation of a single core for all small disturbances. If the critical thickness is 
a function of initial amplitude, then a larger disturbance might produce bifurcation 
for the kb = 0.175 layer. We considered an initial amplitude of a,, k = 1 .O and found 
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FIQURE 8 a+. For caption see facing page. 

that two cores developed. Thus for a layer of thickness kb = 0.175, we have found 
three different types of motion : compact elliptical cores for small amplitudes, 
elongated S-shaped cores for intermediate amplitudes and bifurcation into two cores 
for large amplitudes. Taken together with the results for the kb = 0.125 layer, we infer 
that this behaviour is not unique, but is characteristic of finite disturbances on all 
thin vortex layers. 

We continue our investigation by considering a finite-amplitude disturbance on a 
kb = 0.50 layer. Comparing the results for this layer, figure 10, with the earlier results 
for small disturbances, figure 4, we see that the evolution is almost identical in the 
later stages. The only significant difference is in the time required for roll-up, with 
a shorter time in figure 10 owing to the larger initial amplitude. The development 
of a finite disturbance on a layer of thickness kb = 1 .OO is shown in figure 11. Based 
on our experience with the kb = 0.50 layer, we might not expect any significant change 
from the small-amplitude case. This expectation proves incorrect, as can be seen from 
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FIGURE 8. Evolution of vortex layer subject to large-amplitude shape disturbance, a, k = 0.50; 
layer thickness, kb = 0.125. (a) t' = 0; (a) 19.8; (c) 29.0; (d )  30.6; (e) 33.8; (f) 36.8. 

a comparison of figures 5 and 11. In  the intermediate stages, figures 5(c,d)  ; 11 (c ,d) ,  
the motions appear qualitatively similar, but the later stages, figures 5 ( e , f ) ;  11 ( e , f ) ,  
show marked differences. The large-amplitude disturbance has developed a smaller 
less elongated core with more vorticity in the wings. Reversing the earlier trend, we 
find 30 Yo of the vorticity in the wings as opposed to only 10 % for the small-amplitude 
motion. Another noteworthy feature is that the vortex cores in the present case do 
not rotate, but form stationary regions of vorticity around which the wings circulate. 
The attachment points of the wings precess around the perimeter, and the fluid within 
the core rotates, but the axis of the elliptical core remains horizontal. As time 
progresses, the cores remain stationary, but the vorticity in the outer part of the wings 
is convected downstream into adjacent cells. 

The motion of a kb = 1.278+ layer is similar to that of the kb = 1.00 layer, and we 
do not show the full evolution. Instead, we present the final state for a number of 
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FIQWF~E 9 a-c. For caption see facing page. 

different layers to summarize the effect of layer thickness on the development of 
large-amplitude diafurbances. Each of the layers shown in figure 12 wag perturbed 
with a sinusoidal-shape disturbance with a0 k = 0.50. We identify three distinct types 
of behaviour. For the thinnest layers, kb = 0.100 and 0.125, two vortex cores form 
in a stable orbiting configuration. As a critical thickness is reached, kb = 0.150, a 
single vortex forms, which progresses from an S shape, kb = 0.175, to a more 
rounded elliptical shape, kb = 0.50. This single core rotates at nearly constant angular 
velocity whose magnitude decreases as the thickness of the layer is increased. For 
the thickest layers, kb = 0.80-1.50, the single large vortex core remains stationary 
while the wings circulate around the core. In  the later stages of these motions, 
significant amounts of vorticity in the wings are convected into adjoining periods 
along the layer. 

The profiles shown in figure 12 cover a wide range of layer thicknesses, but it is 
not clear whether they represent the full range of behaviour. The kb = 1.50 layer 
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FIQURE 9. Evolution of vortex layer with large-amplitude shape disturbance; layer thickness, 
kb = 0.175. (a) t' = 0 ;  (b)  9.9; (c) 23.2; (d) 28.6; (e) 32.0; cf)  34.8. 

seems to be a good approximation to the thickest layers, since larger values are stable 
to small disturbances, and the final stage pictured in figure 12 shows only marginal 
increase over the initial amplitude of the disturbance. At the other end of the scale, 
we might question whether kb = 0.100 represents the limiting behaviour for thin 
layers. In  particular, we consider whether infinitesimal values of cc, k would lead to 
double vortex cores on infinitesimally thin layers. To answer this question, we 
considered shape disturbances on zero-thickness vortex sheets using the method 
described by Higdon BE Pozrikidis (1985). For small-amplitude disturbances with 
a, k = 0.03, we found a single vortex core, while, for disturbances larger than 
a, k = 0.10, two vortex cores appeared. In  each case, the vortex core is in the form 
of an exponential spiral with singular circulation at the centre. We conclude that, for 
disturbances below a certain finite amplitude, a single core forms independent of the 
thickness of the layer. Thus, we expect that kb = 0.100 is a reasonable representation 
of the asymptotic behaviour for finite-thickness vortex layers. 
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FIQURE 1Ou-c. For caption see facing page. 

Considering the range of behaviour we have observed for large-amplitude disturb- 
ances, it is of interest to review past efforts which have shown similar behaviour. First, 
with respect to the stationary vortex cores in figure 12(fi), we note that 
Pierrehumbert & Widnall (1981) discovered a class of steady-state solutions for 
periodic regions of constant vorticity with nearly elliptic shape. Saffman & Szeto 
(1981) arrived at the same class of solutions by an independent method. For steady 
state, these solutions require a specific relationship between the eccentricity and the 
vortex spacing. The spacing and eccentricity of the steady cores in figure 12 are in 
excellent agreement with these results. 

The bifurcation of the vortex cores for large disturbances on thin vortex layers may 
be anticipated from a number of previous results. Birkhoff (1962) found similar 
behaviour for large disturbances on vortex sheets using a simple point-vortex model. 
Love (1894) showed that an elliptical-vortex region has a critical eccentricity, e = 3.0, 
above which the vortex is unstable to small disturbances. Thus, it is not surprising 



Nonlinear Kelvin-Helmholtz instability of a Jinite vortex layer 

(4 86 

0 147 

247 

FIGURE 10. Evolution of vortex layer with large-amplitude shape disturbance ; layer thickness, 
kb = 0.50. (a) t’ = 0; (b)  5.6; (c) 10.4; (d) 14.1; (e) 18.4; (f) 21.6. 

that we see bifurcation of narrow vortex cores. For comparison, the eccentricity pf 
the elliptical core in figure 12 ( c )  is approximately e = 4.5. Approaching the question 
of stability from the other side, Saffman & Szeto (1980) demonstrated the existence 
of steady-state solutions with rotating cores. Overman & Zabusky (1982) considered 
the stability of such solutions and showed that there is a critical separation distance 
below which the cores will coalesce. This coalescence leads to the formation of S-shaped 
cores similar to those appearing in figure 12 (d ) .  

A final point to consider is the effect of finite amplitude on circulation disturbances. 
In  this case, the amplitude is limited by the constraint that it must be less than half 
the layer thickness to avoid overlap of the upper and lower boundaries. Within the 
limits dictated by this constraint, we found no qualitative difference between small- 
and large-amplitude circulation disturbances. In  all cases, a single rotating core was 
formed. Similarly, circulation disturbances on vortex sheets always lead to a single 
core. 
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FIGURE 11 a-c. For caption see facing page. 

3.5. Streamline patterns 
We have examined detailed figures showing the evolution of vortex layers and their 
dependence on the disturbance parameters. At this point, we find it instructive to 
examine the fluid velocity field by showing the instantaneous streamlines for three 
layers a t  a late stage in their development. Figure 13 shows the streamlines for layers 
with initial thickness kb = 1.00, 0.50 and 0.125, all subject to large-amplitude 
disturbancesa, k = 0.50. For the thickest layer, figure 13 (a) ,  the streamlinesare nearly 
tangential to the contour of the vortex core-indicating that this contour is essentially 
stationary. The streamlines near the wings are horizontal, which shows that the fluid 
is being convected downstream carrying the vorticity into adjacent periods along the 
layer. In  the intermediate-thickness layer, figure 13 (b), the streamlines intersect the 
vortex core at an appreciable angle showing the rotation of the core. In  this case, 
the velocity in the vicinity of the wings is dominated by the rotating core; hence 
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RQURE 11. Evolution of vortex layer with large-amplitude shape disturbance; layer thickness, 
kb = 1.00. (a) t’ = 0; ( b )  2.5; (c) 6.0; (a) 11.5; (e) 15; cf)  10.5. 

these regions circulate around the core and are not drawn downstream. The 
streamlines for the thinnest layer, figure 13(c), are similar to the preceding case in 
the outer regions of the layer, but differ significantly near the core. Here there is 
a separate region of rotating fluid in each of the cores with a separating streamline 
encircling the two regions. These three streamline patterns are characteristic of the 
types  of motion we have observed on finite vortex layers. 

4. Growth rate of disturbances 
In the foregoing discussion, we have examined the profiles which develop when a 

shear layer is subjected to periodic disturbances but have made only qualitative 
reference to the rate at  which these motions proceed. In the present section, we wish 
to provide a detailed analysis of the growth rates indicating how they are affected 
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FIQURE 12a-c. For caption see page 252. 

by the disturbance parameters. Before proceeding with a discussion of the growth 
rate, we need to clarify the method by which the variables are to be non-dimen- 
sionalized. As noted previously, the layer is characterized by the wavenumber k, 
the initial amplitude u0, the thickness b and the vorticity w. We define the ampli- 
tude a to be the maximum displacement, at  successive times, from the undisturbed 
position and use the non-dimensional form a/ao. This provides a natural comparison 
with linear theory. With respect to  the non-dimensionalization of time, there are two 
obvious choices each of which is meaningful in 8 specific physical context. The first 
choice is t' = wt, which considers the vorticity to be the reference scale. This 
non-dimensionalization is appropriate for studying the response of a layer of given 
thickness to disturbances of varying wavelength. The second choice for time is to 
define t" = k b t .  This choice is the most natural when studying the effect of layer 
thickness. Thus we consider not constant vorticity, but constant total shear across 
the layer. Such a situation arises when a layer is forced at constant wavelength, but 
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FIGURE 12d-j. For caption see overleaf. 

its thickness changes slowly owing to diffusion of vorticity. In  the limit of small 
thickness, the layer behaves as a vortex sheet. As we shall See, these two choices lead 
to markedly different interpretations of the growth rate. 

4.1. Linear theory 

We shall start our discussion by reviewing certain important results from linear 
theory. As is usual, we find that the linearized model predicts exponential growth 
of the form a = a. eet or in non-dimensional form a/ao = ec't'. Even in linear theory, 
the non-dimensionalization oft leads to different interpretations. Figure 14 shows the 
growth rate as a function of kb according to linear theory. The dashed line shows the 
classical result for c' with short waves, kb > 1.278, stable and a maximum growth 
rate for kb = 0.80. The solid line shows the growth rate c" cdrresponding to t" = kbwt. 
Considering the wavelength to be constant, we now infer that thick layers are stable, 
while the growth rate approaches its maximum value for asymptotically thin layers. 
This is simply the growth rate predicted by linear theory for vortex sheets. 

9 F L Y  157 
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FIGURE 12. Final states for vortex layers of varying thickness subject to large-amplitude shape 
disturbances. (a) kb = 0.100; ( b )  0.125; (c) 0.150; (d) 0.175; (e) 0.500; (1) 0.800; (9)  1.OOO; (h)  1.278; 
(i) 1.500. 

One additional feature of the motion which may be examined through the use of 
linear theory is the effect of the phase $ on the initial growth rate. For unstable 
disturbances, an arbitrary phase $ may be split into two component phases, 
representing the growing and decaying normal modes. For large time, the decaying 
mode dies away, and all phases grow at the same rate corresponding to the growing 
normal mode. It is important to realize, however, that the initial growth rate, and 
hence the amplitude at any later instant will depend on the initial phase. Figure 15 
shows the amplitude as a function of time for four different phases on a layer of 
thickness kb = 0.125. The dashed lines are from linear theory, while the solid lines 
are from our numerical calculations. The curve labelled $nm is a straight line, because 
its phase is exactly that of the growing normal mode. Note that the other phases show 
both greater and smaller initial growth rates. The curve g5 = 0 represents shape 
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FIGURE 13. Instantaneous streamline patterns for layers of three different thicknesses 
showing characteristic development of a vortex layer. 
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FIGURE 14. Growth rate predicted by linear theory as a function of thickness kb. Dashed line gives 
result for c’ defined with respect to dimensionless time t’ = wt.  Solid line gives result for C” defined 
with respect to dimensionless time t” = kbwt. 

FIGURE 15. Amplitude of disturbance v e r m s  time plotted on logarithmic axis. Dashed lines show 
linear theory, solids lines results of numerical calculations. Different curves correspond to different 
values of the phase difference 9 between upper and lower boundary perturbations. Curve labelled 
q5nm represents growing normal mode. 
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FIGURE 16. Amplitude of disturbance versus time for layers of varying thickness, subject to 
small-amplitude shape disturbances. Abscissa: (a )  t’ = wt;  ( b )  t” = kbwt. 

disturbances, while 4 = R refers to circulation disturbances. Negative values of 4 
show an initial decay, because they have a large component corresponding to the 
decaying normal mode. 

4.2, Crowth rates for nonlinear disturbances 
The results from linear theory discussed above provide an accurate picture of the 
initial evolution of the vortex layers. For later times, the nonlinear interactions lead 
to a decrease in the growth rate and finally to a bounded amplitude. Figure 16 shows 
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FIQURE 17. Amplitude of disturbance ver8us time for layers of varying thickness subject to 
large-amplitude shape disturbances, Abscissa: (a) t’ = w t ;  ( b )  t” = kbwt. 

the growth of disturbances for several different layers with initial amplitude 
a ,k  = 0.03 as a function of time. The curves are plotted versus t’ and t” in 
figure 16 (a, 6 ) .  In  the first figure, we see the expected result that the kb = 0.50 and 
kb = 1.00 layers grow most rapidly, since these are near the maximum growth rate 
from linear theory. It is interesting to note that the kb = 1.278 layer grows faster 
than the others, but at a linear rate, as opposed to the exponential rate of the unstable 
layers. The thinner layers, kb = 0.125 and kb = 0.175, grow more slowly simply 
because there is less vorticity , and the velocities are correspondingly smaller. These 
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FIGURE 18. Interfacial area aa a function of time for layers of varying thickness. Dashed lines are 
small-amplitude shape disturbances; solid lines are large amplitude. Abscissa: (a) t' = w t ;  ( b )  
t" = kb& 

layers will eventually reach an amplitude of the same order as the other layers. It 
is interesting to note the appearance of a maximum and subsequent decrease in the 
amplitude of the thicker layers. This is not due to a decay, but rather to an oscillation 
caused by the rotation of the elliptical vortex core. The peak in amplitude occurs when 
the major axis of the core is vertical. The elliptical core for the kb = 0.50 layer rotates 
more rapidly, and we see the amplitude begin to rise after going through a local 
minimum. 

Nonlinear Kelvin-Helmholtz imtability of a jinite vortex layer 
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A different view of the growth is shown in figure 16(b), where the amplitude is 
plotted versua t”.  Here we find that the thinnest layers grow most rapidly with a 
monotonic decrease in the growth rate for decreasing thickness. This is consistent with 
linear theory and is easily explained by the fact that each layer represents the same 
total velocity shear. Thus i t  is natural that the more concentrated shear in the thinner 
layers should lead to a more rapid growth of disturbances. As indicated above, all 
layers will eventually reach comparable amplitudes. Thus we find that the final 
amplitude of the layer is of order 0.2 times the wavelength and is nearly independent 
of the initial thickness of the layer. 

The results just presented were for small initial amplitudes; for finite initial 
amplitude a,k = 0.50, the growth rates are shown in figure 17(a,b). The results in 
these figures are essentially similar to those for the small amplitudes; however, there 
are a few significant differences. First, we note that the thickest layers now show a 
somewhat smaller final amplitude, and the kb = 1.50 layer has decaying amplitude 
as might be expected. On the other hand, the kb = 1.278 layer more closely 
approaches the thinner layers. One of the interesting features of these growth curves 
revealed most clearly in figure 17 (b) is that the bifurcation into two vortex cores does 
not seem to affect the growth rate. This is seen in the nearly identioal curves for 
kb = 0.100-0.175. On the other hand, the formation of a steady non-rotating core for 
the large-amplitude disturbances on thick layers is apparent from the more gradual 
oscillation in the amplitude for the layers kb = 1.00 and 1.278. With the exception 
of the two stable layers, kb = 1.278 and 1.50, we find that the asymptotic amplitude 
is nearly constant for all layers and is again in the range 0.15-0.2 times the wavelength 
of the disturbance. 

4.3. Growth of interfacial area 
In the preceding discussion, we have examined the growth of disturbances through 
the maximum displacement of the boundaries. This is the most obvious measure of 
the growth rate, but there are other quantities ofphysical interest. One such quantity 
is the area of the interface between the mixing layers. This quantity is particularly 
important for chemical engineers studying reacting streams. If a reaction proceeds 
at a very fast rate and is thus diffusion limited, the rate of generation of products 
is directly proportional to  the growth rate of interfacial area. Figure 18 (a) shows the 
interfacial area as a function oft’ for three different-thickness layers. In this figure, 
results are shown for both small, a,, k = 0.03, and large disturbances a, k = 0.50. The 
most important conclusion to be drawn from these curves is that the growth rate 
approaches a constant value for each of the layers considered. This is consistent with 
the experimental result8 of Breidenthal (1981) who found a constant reaction rate 
as long as the mixing layer maintained a two-dimensional structure. Overall, the 
growth rates for interfacial area are consistent with the results for the growth rates 
of amplitude. Specifically, we note that the thinnest layer shows the smallest growth 
in area simply because the velocities are much smaller. The kb = 1.00 layer shows 
the fastest growth rate as before, and the large-amplitude disturbances develop more 
quickly than those of small amplitude. 

A slightly different picture of the growth in area is given in figure 18(b), where the 
area is plotted versua t“.  Here we see some interesting results arising from the 
timescaling. For small disturbances, all curves have essentially the same slope 
indicating identical growth rates. The only differences are in the time required to 
reach this asymptotic state. This implies that the different slopes observed in 
figure 18 (a )  may be attributed solely to the difference in the amount of vorticity in the 
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FIQURE 19.. Thickness of layer at stagnation point, h,, on logarithmic axis as a function of time 
for layers of different thickness. (a) Small-amplitude disturbance; ( b )  large-amplitude disturbance. 

layers. Comparing the small-amplitude and large-amplitude curves in figure 18 (b), 
we see a slight change in the growth rates. For large amplitudes, the kb = 0.50 layer 
has the same growth rate, while the kb = 1.00 rate is smaller and the kb = 0.125 rate 
is larger. These changes may be explained by examining the profiles of the layers in 
these cases. The large-amplitude disturbance on the kb = 0.50 layer was indis- 
tinguishable from its small-amplitude counterpart. The large-amplitude disturbance 
on the kb = 0.125 layer showed a bifurcation into two vortex cores, leading to more 
growth in interfacial area. Finally, the large-amplitude disturbance on the kb = 1.00 
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layer leads to a stationary vortex core which may be expected to lead to less rapid 
growth in area. Our general conclusion is that the initial disturbance and the resulting 
structure of the layer have a strong influence on the growth of interfacial area. Under 
all circumstances, the growth rate will approach a constant value after an initial 
start-up period. 

4.4. Thickness of vortex braids 

In all of the layers we have studied, we have noted the gradual thinning of the vortex 
wings or braids connecting the periodic vortex cores. As the evolution of a layer 
proceeds, these regions decrease monotonically in thickness. To analyse this pheno- 
menon in more detail, we consider the rate at which this thinning occurs. A 
characteristic value h, is defined as the thickness at the midpoint of the braid, i.e. 
at the point where the layer crosses the symmetry plane. This is a stagnation point 
in the flow field. The thickness h, is plotted on logarithmic axes versus t” for small 
disturbances, figure 19(a), and for large disturbances, figure 19(b) .  In both cases, the 
points fall along a straight line, indicating an exponential decrease in thickness. This 
simple decay law indicates a constant rate of stretching a t  the stagnation point; 
hence the extensional flow is induced primarily by the vortex cores and not by the 
vorticity in the braids themselves. 

The information presented in figure 19 may be used in a qualitative discussion of 
the effect of a mild density difference across the vortex layer. In this case, there is 
baroclinic vorticity generation in the braids. A simple vorticity balance may be made 
to determine if the density difference is sufficient to maintain the level of vorticity 
in the braids or if the braids will continue to decay. In  this balance, the rate of 
depletion is equal to dh,/dt from figure 19 and is independent of h,. It does depend 
on the strength of the vortex cores and will increase as the total vorticity increases. 
A more detailed discussion of this mechanism is given by Corcos & Sherman (1976, 
1984). 

5. Discussion 
We have seen a wide range of phenomena which may occur in nonlinear Kelvin- 

Helmholtz instability. At  this point, it  is appropriate to summarize our results and 
identify those features which are most important in relation to previous work and 
in interpreting real flows. Many investigators have shown patterns of vortex roll-up 
similar to those presented here. These studies have employed vortex methods such 
as the cloud-in-cell calculations ofAref & Siggia (1980) or have involved finite-difference 
solutions of the Navier-Stokes equations such as those discussed by Corcos & 
Sherman (1984). The most significant result of our calculations has been to show how 
differences in the initial conditions - thickness of the layer, initial amplitude and type 
of disturbance - affect the later development of the vortex layer. We have shown that 
these initial conditions affect not only the growth rates, but also the asymptotic form 
of the vortex structures. 

The effect of initial amplitude is a point of major importance which has not been 
adequately addressed up to now. In numerical computations of all types, it is 
convenient to start with relatively large initial amplitudes to save computation time. 
Conversely, in some experiments a strong initial distubance is used to isolate a specific 
wavelength from the continuous spectrum of background disturbances. We have 
shown that caution must be exercised in this approach if the results are to be 
interpreted as representative of infinitesimal disturbances. Finally, we note that 
disturbances in real flows may indeed be of finite amplitude, eg .  when a disturbance 
is introduced by convection from a distant part of the flow field. 
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The response of the vortex layer as a function of layer thickness (or wavelength) 
is a second area which requires careful consideration. Most calculations employing 
vortex markers cannot address this issue, because the layer is typically only a few 
markers thick. The subtle differences discovered in this paper require a resolution 
of small scales which is difficult to achieve with discrete vortex markers, except 
at prohibitive cost. Finite-difference calculations (Corcos & Sherman 1984) have 
examined different thicknesses, but only for a few cases. Moreover, the relatively low 
Reynolds numbers considered lead to the rapid diffusion of vorticity , effectively 
eliminating many of the thin layers studied in the present effort. We view our 
calculations as being complementary to the finite-difference solutions. On the one 
hand, we are showing fine details which are obscured in the viscous calculations, while, 
on the other, our inviscid results are not as easy to compare with experiments, because 
they represent the asymptotic limit of infinite Reynolds number. Taking the two sets 
of calculations together presents a more complete picture of vortex roll-up in real 
shear layers. 

The lack of viscous dissipation just mentioned is one of the limitations of the 
present method. There are a number of other limitations which must now be 
examined. First and most obvious is the restriction to periodic layers with a single 
monochromatic disturbance. 0 ther authors have discussed the imperfect analogy 
between the temporal growth of periodic disturbances and the spatial growth in a 
real shear layer (see e.g. Aref 1983 or Corcos & Sherman 1984); it is unnecessary to 
repeat those comments here. Of more direct concern is the restriction to a single- 
wavelength disturbance, which explicitly eliminates the possibility of vortex pairing - 
one of the most important growth mechanisms in real shear layers. There are three 
stages in the growth of disturbances on free shear layers: (1) exponential growth 
described by linear theory, (2) nonlinear growth leading to asymptotic configurations 
and (3) subharmonic interactions leading to vortex pairing. Previous calculations by 
authors mentioned above have modelled all three aspects of the growth process. We 
have restricted our calculations to the first two stages, in order that we might 
concentrate on the details of the nonlinear growth phase. We have stressed the 
differences in the asymptotic states of the various monochromatic disturbances 
precisely because vortex pairing is so important. Our final configurations form the 
initial conditions for subharmonic disturbances. Subtle changes in these base flows 
can lead to drastic differences in the further evolution of the layer as it undergoes 
vortex pairing. This subject will be dealt with further in a future paper. 

We have dealt with the assumptions of inviscid flow and periodic disturbances. A 
final question concerns the assumption of constant-vorticity layers. The velocity 
profile associated with this vorticity distribution is a close approximation of real flows 
over the centre of the layer but possesses an unphysical jump in the velocity gradient 
at the edge. This discontinuity does not affect the overall development of the flow 
but may lead to irregularities in a rigorous mathematical analysis. It has already been 
shown (Meiron, Baker & Orszag 1982 ; Higdon & Pozrikidis 1985) that the discontinuity 
in velocity across a vortex sheet may lead to a singularity after a finite time. Among 
other effects, this leads to infinite curvature at a point on the sheet. It is possible 
that similar problems may occur with the constant-vorticity model. Fortunately, such 
occurrences would have a much weaker effect than in the case of vortex sheets. A final 
resolution of this question must await a more refined mathematical analysis. 
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Appendix 
In this Appendix, we present the linear-stability theory for a constant-vorticity 

layer, following Rayleigh (1880). We consider an unperturbed shear layer with 
constant vorticity, such that 

The upper and lower boundaries of the vortex layer are perturbed such that 

where 

In these expressions, Im (u) is the growth rate and $ is the phase angle. 
The fluid velocity field may be written as a contour integral over the vortex region: 

u(x )  = -- lnlx-x'ldl', 2", s, 
where the vorticity w is just -2Ulb.  

The linearized kinematic conditions at the boundaries of thenvortex layer require 

An expression for the disturbance velocity v is obtained by evaluating the contour 

To leading order, this gives 
integral (A 6) over the disturbed boundaries. 

2, = -liwy,[l 2 -e-kb+i$ 1 at y = y + ,  

v = -+iwlg2[e-kb-iC- 13 at y = y-. 

Substituting for v in (A 7) and (A 8), yields the equations 

which must be satisfied for non-zero 7, and q2. 
Solving for CT and $ yields 
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For values of the wavenumber in the range 0 < kb < 1.2785, cr is purely imaginary, 
and the disturbance grows exponentially. The phase angle 4 corresponding to the 
exponentially growing and decaying modes may be obtained from (A 14). 
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